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Abstract. Transition energies, Coulomb repulsions and effective quantum numbers have been calculated
for the doubly excited Nsnp: 3P 0 (for N = 2, n = N, . . . , 5); Nsnd: 3De (for N = 2, n = N + 1, . . . , 5)
and Npnd: 3F 0 (for N = 2, n = N + 1, . . . , 5) states for the highly stripped ions Na9+, Mg10+, Al11+,
Si12+, P13+ and S14+. Time-dependent perturbation theory has been applied to calculate such transitions
properties. A time-dependent harmonic perturbation causes simultaneous excitation of both the electrons
with a change of spin state. The doubly excited energy levels and the analytic representation of their
wave functions are obtained by identifying the poles of an appropriately constructed linearized variational
functional with respect to driving frequency. Most of the results are new. The transition energies and
effective quantum numbers of 2s2p: 3P 0 states of all the ions agree well with the only available experimental
data.

PACS. 31.50.+w Excited states – 32.80.Dz Autoionization

1 Introduction

Doubly excited states play an important role in a wide
range of atomic and molecular processes. The dynamics
and spectroscopy of the doubly excited states are the sub-
ject of current interest because the understanding of these
states requires a fundamental departure from the conven-
tional independent particle model and a new set of quan-
tum numbers is necessary to designate such levels [1,2].
These states are very useful for diagnostic of laboratory
and astrophysical plasmas and also play a major role in
multielectron phenomena in ion atom collisions and par-
ticularly in dielectronic recombination processes which oc-
cur in low-density coronal plasma where the distribution
of atoms among various ionization stages and in turn the
coronal equilibrium is mainly guided by the balance be-
tween the rates of various detailed ionization and recombi-
nation processes; one is the inverse of the other [3,4]. He-
like ions are often prominent in high-temperature plasma
occurring in astrophysics and in the laboratory. SXV is an
ion suitable to diagnose plasmas of a temperature at about
107 K, because it has the maximum fractional abundance
around there. The Bragg crystal spectrometer carried by
the YOHKOH satellite detects soft X-rays from SXV in
the solar corona to provide information on the coronal
plasma [5,6]. Moreover, NaX, MgXI, AlXII, SiXIII, PXIV
and SXV are detected spectroscopically in plasmas of the
upper solar atmosphere [7] and also by observing coronal
lines due to the decay of doubly excited states in such
ions [8].
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After the pioneering photoabsorption measurements of
Madden and Codling [9,10] on helium, a number of theo-
retical [11–14] and experimental [15–18] approaches so far
adopted to study the doubly excited states but their inves-
tigations are confined to He and in some cases to the few
members of the He isoelectronic sequence. The experimen-
tal results are now available for the doubly excited states
of highly stripped ions [19–24]. It should be mentioned
here that no theoretical results so far reported in the liter-
ature on these systems. Very recently we have developed
and applied a method [25,26] based on time-dependent
variation perturbation theory (TDVPT) to study the dou-
bly excited triplet states of two-electron atomic systems.
The theory has achieved a fair amount of success in pre-
dicting the transition energies of the doubly excited triplet
states of the first four members of the He isoelectronic se-
quence. In this method a spin-dependent harmonic pertur-
bation is applied on the system. The perturbation opera-
tor is such that it alters the spatial symmetry of both the
orbitals simultaneously and changes the spin symmetry
from singlet to triplet. The description of the perturbed
wave function is essentially correlated. A linearized varia-
tional functional is constructed along the same line as has
been discussed by [27,28]. The response of the electronic
charge cloud towards such a perturbation is studied by
varying the external frequency. The functional has poles at
certain frequencies which furnish the transition energies to
the doubly excited states. From a study of the behavior of
the perturbed function at the singularities, analytic repre-
sentations of the doubly excited functions can be obtained
which are utilized for studying such transition properties.
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In this communication we report the calculations for a few
low and moderately high lying doubly excited 3P 0, 3De,
and 3F 0 states of Na9+, Mg10+, Al11+, Si12+, P13+ and
S14+ from their ground state 1Se. A brief review of the
theory is discussed in Section 2, followed by discussions of
theoretical results in Section 3.

2 Theory

The two-electron ions are described by the usual non-
relativistic Hamiltonian H0 (we use a.u. throughout) and
a spin-dependent harmonic perturbation of the form

H ′(r̄, σ̄, t) = G(r̄, σ̄)e−iωt + G+(r̄, σ̄)eiωt (1)

is applied on the system, where the perturbation G(r̄, σ̄)
is such that it excites both the electrons simultaneously
to a new state changing the spin multiplicity from singlet
to triplet. A suitable choice of the perturbation may be

G(r̄, σ̄) = λ[h(r̄1)h
′(r̄2)− h(r̄2)h

′(r̄1)]

×[S−(1)S+(2)− S−(2)S+(1)] , (2)

where λ is the perturbation strength parameter, S+ and
S− are the usual spin-up and spin-down operators. The
spatial term excites both the electrons from the ground
state. The general structure of the one-particle term is
given by

h(r̄) ≈ rlPl(cosϑ) , (3)

where l = 0, 1, 2, . . . , will excite the ground-state s orbital
to s, p, d, . . . , symmetries, respectively. Under the action
of this perturbation the time evolution of the total wave
function may be written as

Φ(r̄, t) = N [Ψ(r̄) + δΨ−(r̄)e−iωt + δΨ+(r̄)eiωt]eiE0t, (4)

where δΨ± are the first-order admixtures to the ground-
state function Ψ due to two components of the harmonic
perturbation and E0 is the ground-state energy. The nor-
malization constant N is determined from the condition

1

T

∫ T
0

〈Φ|Φ〉dt = 1 . (5)

Since the perturbation (Eq. (2)) changes the spin mul-
tiplicity, the spin part of Ψ and δΨ± are different. To
determine the time evolution of the total wave function
we have to determine the first-order perturbed functions
δΨ±. These are obtained by constructing a time-averaged
(time averaging is performed over the time period T of
the harmonic perturbation) functional

J(Φ) =
1

T

∫ T
0

〈Φ|H0 + H ′ − i∂/∂t|Φ〉dt , (6)

subject to the optimization condition

δJ(Φ) = 0 . (7)

The optimization is done with respect to the variation
parameters introduced in δΨ±. We expand the spatial part
of δΨ± in the following way:

δΨ± =
∑
i

C±i ηi(1, 2) , (8)

where ηi(1, 2) are correlated pair bases formed out of suit-
able one-particle Slater orbital (STOs) products [25]

ηi(1, 2) ≈ ξk(1)ξ′l(2)− ξk(2)ξ′l(1) (9)

and C±i are the linear variation parameters. The choice
of the exponents of the Slater bases depends on the sym-
metry and the principal quantum number of the excited
orbitals and are preassigned here. We expand the func-
tional (Eq. (6)) in terms of δΨ± and retain terms up to
quadratic in δΨ±. The optimization condition

∂J(Φ)

∂C±
= 0 (10)

leads to sets of decoupled linear equations in the unknow
parameters C± [25] which can readily be solved for a given
external frequency to get the response characteristics of
the systems. The present calculation is non-relativistic.
Breit and other relativistic corrections can be ignored at
the present level of accuracy. A discussion of the results is
given in the next section.

3 Results and discussions

In this present communication, we have calculated tran-
sition energies, Coulomb repulsion and effective quan-
tum numbers of the doubly excited triplet transitions viz.
1s2: 1Se → Nsnp: 3P 0(N = 2, n = N, . . . , 5); Nsnd:
3De(N = 2, n = N + 1, . . . , 5) and Npnd: 3F 0(N = 2,
n = N + 1, . . . , 5) for the highly stripped ions Na9+,
Mg10+, Al11+, Si12+, P13+ and S14+. We have used im-
proved Roothaan-Hartree-Fock (RHF) ground-state func-
tions of Koga et al. [29] for all ions under present consid-
eration. For all the perturbed functions, 9 parameter STO
representation has been used for the excited orbitals, the
exponents being preassigned. The choice of the exponents
depends on the symmetry and principal quantum num-
ber of the orbitals concerned. Since we are considering
excitations of different orbital symmetry, we get 81 lin-
ear variation parameters of the product bases from nine
parameter description of the orbitals. The parameters are
determined through optimization and furnish a very rea-
sonable description of the perturbed wave function at each
frequency. The optimized functional J(Φ) increases con-
tinuously and regularly with respect to the driving fre-
quency ω with real poles at certain frequency. The pole
positions determine the doubly excited modes of the un-
perturbed Hamiltonian and hence the positions of these
poles furnish the doubly excited energy levels measured
from the ground state of the systems. The first-order per-
turbed function δΨ− blows up at pole positions and the
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Table 1. Energies (measured from ground state), Coulomb repulsions and effective quantum numbers (n∗) of the doubly excited
3P 0 states of the highly stripped ions below the N = 2 hydrogenic threshold.

Ions States N(K, T )An Coulomb Effective quantum
Energies (a.u.) repulsions (a.u.) numbers

Theoryα Theoryβ Observeda Theory Theory Observeda

Na9+ 2s2p 2(1, 0)+2 85.4379 85.6330 85.5682 1.4177 1.9123 1.9081

23sp+ 2(1, 0)+3 93.2636 93.4587 0.8504 2.9239

23sp− 2(0, 1)−3 93.3545 93.5496 0.9389 2.9469

24sp+ 2(1, 0)+4 95.8687 96.0638 0.5404 3.9269

24sp− 2(0, 1)−4 95.9246 96.1197 0.5668 3.9612

25sp+ 2(1, 0)+5 97.0740 97.2691 0.3388 4.9543

25sp− 2(0, 1)−5 97.1044 97.2995 0.3604 4.9916

Mg10+ 2s2p 2(1, 0)+2 102.2010 102.4631 102.3702 1.5504 1.9201 1.9147

23sp+ 2(1, 0)+3 111.5671 111.8292 0.9320 2.9307

23sp− 2(0, 1)−3 111.6665 111.9286 1.0285 2.9516

24sp+ 2(1, 0)+4 114.7025 114.9646 0.5607 3.9343

24sp− 2(0, 1)−4 114.7616 115.0237 0.6154 3.9644

25sp+ 2(1, 0)+5 116.1420 116.4041 0.3599 4.9500

25sp− 2(0, 1)−5 116.1748 116.4369 0.3921 4.9832

Al11+ 2s2p 2(1, 0)+2 120.4647 120.8145 120.6886 1.6827 1.9267 1.9204

23sp+ 2(1, 0)+3 131.5236 131.8734 1.0127 2.9387

23sp− 2(0, 1)−3 131.6219 131.9717 1.1181 2.9561

24sp+ 2(1, 0)+4 135.2271 135.5769 0.6160 3.9417

24sp− 2(0, 1)−4 135.2927 135.6425 0.6743 3.9699

25sp+ 2(1, 0)+5 136.9501 137.2999 0.4236 4.9733

25sp− 2(0, 1)−5 136.9866 137.3364 0.4438 5.0048

Si12+ 2s2p 2(1, 0)+2 140.2258 140.6840 140.5173 1.8152 1.9321 1.9250

23sp+ 2(1, 0)+3 153.1053 153.5635 1.0950 2.9430

23sp− 2(0, 1)−3 153.2097 153.6679 1.2082 2.9589

24sp+ 2(1, 0)+4 157.4325 157.8907 0.6621 3.9453

24sp− 2(0, 1)−4 157.5027 157.9609 0.7279 3.9710

25sp+ 2(1, 0)+5 159.4386 159.8968 0.4313 4.9689

25sp− 2(0, 1)−5 159.4773 159.9355 0.4659 4.9972

P13+ 2s2p 2(1, 0)+2 161.4908 162.0895 161.8720 1.9473 1.9370 1.9290

23sp+ 2(1, 0)+3 176.3344 176.9331 1.1788 2.9480

23sp− 2(0, 1)−3 176.4460 177.0447 1.2975 2.9627

24sp+ 2(1, 0)+4 181.3292 181.9279 0.7191 3.9497

24sp− 2(0, 1)−4 181.4071 182.0058 0.7835 3.9745

25sp+ 2(1, 0)+5 183.6457 184.2444 0.5029 4.9713

25sp− 2(0, 1)−5 183.7481 184.3468 0.5874 5.0367

S14+ 2s2p 2(1, 0)+2 184.2164 184.9919 184.7226 2.0834 1.9399 1.9314

23sp+ 2(1, 0)+3 201.1706 201.9461 1.2569 2.9485

23sp− 2(0, 1)−3 201.3012 202.0767 1.3865 2.9635

24sp+ 2(1, 0)+4 206.9025 207.6780 0.7571 3.9505

24sp− 2(0, 1)−4 206.9822 207.7577 0.8312 3.9725

25sp+ 2(1, 0)+5 209.5766 210.3521 0.5006 4.9809

25sp− 2(0, 1)−5 209.6347 210.4102 0.5009 5.0132

αUsing RHF ground-state energy [29].
βUsing experimental ground-state energy [19–24].
aMartin et al. [19–24].
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Table 2. Energies (measured from ground state), Coulomb repulsions and effective quantum numbers (n∗) of the doubly excited
3De states of the highly stripped ions below the N = 2 hydrogenic threshold.

Ions States N(K, T )An Coulomb Effective quantum
Energies (a.u.) repulsions (a.u.) numbers

Theoryα Theoryβ Theory Theory

Na9+ 2s3d 2(0, 1)03 93.4268 93.6219 1.0100 2.9558

2s4d 2(0, 1)04 95.9377 96.1328 0.5851 3.9694

2s5d 2(0, 1)05 97.0986 97.2937 0.3843 4.9845

Mg10+ 2s3d 2(0, 1)03 111.7467 112.0088 1.1061 2.9688

2s4d 2(0, 1)04 114.7767 115.0388 0.6414 3.9722

2s5d 2(0, 1)05 116.1801 116.4422 0.4096 4.9887

Al11+ 2s3d 2(0, 1)03 131.7023 132.0521 1.2028 2.9707

2s4d 2(0, 1)04 135.3006 135.6504 0.6988 3.9734

2s5d 2(0, 1)05 136.9746 137.3244 0.4535 4.9944

Si12+ 2s3d 2(0, 1)03 153.3069 153.7651 1.2991 2.9739

2s4d 2(0, 1)04 157.5220 157.9802 0.7561 3.9783

2s5d 2(0, 1)05 159.4759 159.9341 0.4965 4.9962

P13+ 2s3d 2(0, 1)03 176.5357 177.1344 1.3953 2.9746

2s4d 2(0, 1)04 181.4150 182.0137 0.8123 3.9770

2s5d 2(0, 1)05 183.6845 184.2832 0.5171 4.9958

S14+ 2s3d 2(0, 1)03 201.4063 202.1818 1.4918 2.9757

2s4d 2(0, 1)04 207.0029 207.7784 0.8691 3.9783

2s5d 2(0, 1)05 209.5900 210.3655 0.5579 4.9883

αUsing RHF ground-state energy [29]. βUsing experimental ground-state energy [19–24].

renormalization of the first-order perturbed function at
pole position represents adequate description of the dou-
bly excited wave functions. The basic idea of this approach
is to scan the eigenspectrum of the unperturbed Hamil-
tonian adopting a time-dependent viewpoint by probing
the system with an external time-dependent stimulus that
causes transitions to the doubly excited states of the un-
perturbed Hamiltonian from the ground state.

The transition energies, Coulomb repulsion integrals
and effective quantum numbers of the doubly excited 3P 0

states of all the ions obtained by our approach (TDVPT)
are displayed in Table 1. The level description has been
done according to the configuration scheme of Cooper et
al. [30]. Such results for the other two doubly excited 3De

and 3F 0 states are listed in Tables 2 and 3, respectively. In
all cases transition energies are measured from 1Se ground
sate of the respective ions. The angular part of the two-
particle perturbation operator is chosen in such a way that
Nsnp: 3P 0, Nsnd: 3De and Npnd: 3F 0 final sates are al-
lowed. The quantum number N , K, T , n and A obtained
from group theoretical and hyperspherical coordinate ap-
proach [31,32] are also displayed in these tables to have
a correspondence with the configuration scheme [33]. In
group theoretical and hyperspherical coordinate analysis,
effect of radial and angular correlations has been taken
care of, whereas our method incorporates radial correla-
tion only.

The only available experimental results [19–24] for the
doubly excited 2s2p: 3P 0 states of all the ions are also
listed in Table 1 along with our theoretical results for com-

Fig. 1. Plot of the difference of transition energies (a.u.) of
2s2p: 3P 0 states vs. nuclear charge (Z) for the highly stripped
ions. The insets a and b show, respectively, the plot of the
transition energies (a.u.) of 2s3d: 3De and 2p3d: 3F 0 states
against Z.

parison. We have estimated the transition energies both
from the RHF ground-state energy of Koga et al. [29] and
from experimental ground state. These are indicated by
the superscript α and β, respectively in Table 1. It is ob-
served from the table that for Na9+, our calculated tran-
sition energy is little higher than that of experiment and
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Table 3. Energies (measured from ground state), Coulomb repulsions and effective quantum numbers (n∗) of the doubly excited
3F 0 states of the highly stripped ions below the N = 2 hydrogenic threshold.

Ions States N(K, T )An Coulomb Effective quantum
Energies (a.u.) repulsions (a.u.) numbers

Theoryα Theoryβ Theory Theory

Na9+ 2p3d 2(1, 0)03 93.4433 93.6384 1.0255 2.9701

2p4d 2(1, 0)04 95.9429 96.1380 0.5905 3.9726

2p5d 2(1, 0)05 97.0970 97.2921 0.3890 4.9825

Mg10+ 2p3d 2(1, 0)03 111.7643 112.0264 1.1239 2.9726

2p4d 2(1, 0)04 114.7823 115.0444 0.6483 3.9751

2p5d 2(1, 0)05 116.1781 116.4402 0.4263 4.9866

Al11+ 2p3d 2(1, 0)03 131.7246 132.0744 1.2223 2.9747

2p4d 2(1, 0)04 135.3092 135.6590 0.7060 3.9771

2p5d 2(1, 0)05 136.9732 137.3230 0.4600 4.9932

Si12+ 2p3d 2(1, 0)03 153.3233 153.7815 1.3206 2.9765

2p4d 2(1, 0)04 157.5230 157.9812 0.7637 3.9786

2p5d 2(1, 0)05 159.4801 159.9383 0.4977 4.9993

P13+ 2p3d 2(1, 0)03 176.5608 177.1595 1.4186 2.9780

2p4d 2(1, 0)04 181.4246 182.0233 0.8209 3.9801

2p5d 2(1, 0)05 183.6850 184.2837 0.5250 4.9961

S14+ 2p3d 2(1, 0)03 201.4347 202.2102 1.5167 2.9791

2p4d 2(1, 0)04 207.0134 207.7889 0.8786 3.9812

2p5d 2(1, 0)05 209.5950 210.3705 0.5585 4.9911

αUsing RHF ground-state energy [29]. βUsing experimental ground-state energy [19–24].

Fig. 2. Plot of effective quantun numbers of 2s2p: 3P 0 states
vs. nuclear charge (Z) for the highly stripped ions.

the minimum deviation between our calculated transition
energy (using experimental ground state) and the experi-
mental value is about 0.07%. The deviation increases as we
move towards the higher members and reaches its maxi-
mum value of 0.15% for S14+. This discrepancy comes
from two sources, namely, the effect of angular correlation
and the relativistic effect. The effect of angular correlation
decreases as we go over to the higher ionized species be-
cause with the increase of nuclear charge (Z), the nuclear

potential term dominates over the interelectron Coulomb
potential but the relativistic effect increases with the in-
crease of Z. In Figure 1, the difference of transition energy
between our calculated values and the experimental re-
sults for the 2s2p: 3P 0 states has been plotted against Z.
The difference of energy increases as we move towards the
higher ionized ions indicating the presence of relativistic
effect in such ions. The insets a and b show, respectively,
the plot of the transition energies of 2s3d: 3De and 2p3d:
3F 0 states against Z. The smooth behavior of the curves
indicates the consistency of our predicted results. Along
with the transition energies, we get analytic wave func-
tion for the doubly excited states in terms of Slater bases.
These analytic wave functions contain a lower number of
parameters than those from traditional variational calcu-
lation. These wave functions are used to calculate the ex-
pectation value of the Coulomb repulsion term in the dou-
bly excited states. The very regular behavior of the expec-
tation values shows the consistency of the excited-state
wave functions. These wave functions may be effectively
used for collisional calculations involving doubly excited
sates, many of which are important in solar chromosphere.
As an extra check, we have also calculated the effective
quantum numbers (n∗) of the doubly excited energy lev-
els using the formula [14]

ε = −
1

2

[(
Z

N

)2
+

(
Z − 1

n∗

)2]
, (11)
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where ε is the energy of the doubly excited energy level
(in a.u.) measured from the ionization threshold, N is the
principal quantum number of the inner electron and Z is
the nuclear charge. It is also observed from the table that
our calculated effective quantum number for the 2s2p: 3P 0

states of all the ions agree well with the experimental val-
ues. It should be specifically mentioned that there are no
other theoretical and experimental data so far available in
the literature for these states. However, the configuration
interaction (CI) calculations could easily be done for the
present systems and lead to exact results within the basis
set used. The effective quantum numbers (n∗) if the 2s2p:
3P 0 states have been plotted against Z in Figure 2 which
shows a shift from the experimental one. This shift is due
to the fact that any error in calculating the excitation en-
ergy makes an appreciable deviation for the value of n∗

(Eq. (11)).
Tables 2 and 3 display the transition energies, Coulomb

repulsions and effective quantum numbers for the doubly
excited Nsnd: 3De and Npnd: 3F 0 states, respectively.
There are no theoretical and experimental results avail-
able for comparison. However, we can check our calculated
transition energies in terms of configuration. The transi-
tion energy of 2s3d: 3De state will be energetically higher
than 2s3p: 3P 0 state and the other 3De states will be
higher than the corresponding 3P 0 states. By similar way,
the 2p3d: 3F 0 state will be energetically higher than 2s3d:
3De state and same for other states also. The transition
energies listed in Tables 2 and 3 follow this trend and also
the Coulomb repulsion terms are very regular.

In view of the satisfactory agreement with the exper-
imental results for doubly excited 2s2p: 3P 0 states and
lack of reference data, particularly, for high lying doubly
excited 3P 0, 3D0 and 3F 0 states, our results may serve as
a reliable set for future references.
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